Computational Regulatory Genomics

From BeerLab
Revision as of 23:49, 1 December 2013 by MBeer (talk | contribs)
Jump to navigation Jump to search

Welcome to the Beer Lab!

Beer lab plate art.jpg

Research Interests:

The ultimate goal of our research is to understand how genomic DNA sequence specifies gene regulation.

We have recently made significant progress in understanding how DNA sequence features control cell-type specific mammalian enhancer activity by using kmer-based SVM machine learning approaches. For details, see:

This work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites which operate to define the activity of a set of cell-type specific enhancers. We are currently focused on:

  • improving this methodology by including more diverse constraints and features
  • predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS disease association
  • experimentally characterizing the predicted impact of regulatory element mutation in mammalian cells
  • systematically determining regulatory elements from ENCODE human and mouse data
  • using the inferred regulatory code to assess common modes of regulatory element evolution and variation

Lab Members

Publications