Difference between revisions of "Computational Regulatory Genomics"

From BeerLab
Jump to navigation Jump to search
Line 17: Line 17:
 
* '''[http://www.ncbi.nlm.nih.gov/pubmed/21875935 Discriminative prediction of mammalian enhancers from DNA sequence.]''' Lee D, Karchin R, and Beer MA. 2011. Genome Research 21:2167-2180.
 
* '''[http://www.ncbi.nlm.nih.gov/pubmed/21875935 Discriminative prediction of mammalian enhancers from DNA sequence.]''' Lee D, Karchin R, and Beer MA. 2011. Genome Research 21:2167-2180.
  
This work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites which operate to define the activity of a set of cell-type specific enhancers.  We are currently focused on:
+
Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites which operate to define the activity of a set of cell-type specific enhancers.  We are currently focused on:
  
 
* improving this methodology by including more general sequence features and constraints
 
* improving this methodology by including more general sequence features and constraints

Revision as of 23:54, 1 December 2013

Welcome to the Beer Lab!

Error creating thumbnail: Unable to save thumbnail to destination

Research Interests:

The ultimate goal of our research is to understand how genomic DNA sequence specifies gene regulation.

We have recently made significant progress in understanding how DNA sequence features control cell-type specific mammalian enhancer activity by using kmer-based SVM machine learning approaches. For details, see:

Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites which operate to define the activity of a set of cell-type specific enhancers. We are currently focused on:

  • improving this methodology by including more general sequence features and constraints
  • predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases
  • experimentally assessing the predicted impact of regulatory element mutation in mammalian cells
  • systematically determining regulatory element logic from ENCODE human and mouse data
  • using this sequence based regulatory code to assess common modes of regulatory element evolution and variation

Lab Members

Publications