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Dynamic network-guided CRISPRi screen 
identifies CTCF-loop-constrained nonlinear 
enhancer gene regulatory activity during cell 
state transitions

Renhe Luo1,2, Jielin Yan1,2, Jin Woo Oh    3, Wang Xi3, Dustin Shigaki3, 
Wilfred Wong4,5, Hyein S. Cho1, Dylan Murphy5,6, Ronald Cutler7, Bess P. Rosen1,5, 
Julian Pulecio1, Dapeng Yang    1, Rachel A. Glenn1,5, Tingxu Chen1,2, Qing V. Li1,2, 
Thomas Vierbuchen1, Simone Sidoli    7, Effie Apostolou    6, 
Danwei Huangfu    1  & Michael A. Beer    3 

Comprehensive enhancer discovery is challenging because most enhancers, 
especially those contributing to complex diseases, have weak effects on 
gene expression. Our gene regulatory network modeling identified that 
nonlinear enhancer gene regulation during cell state transitions can be 
leveraged to improve the sensitivity of enhancer discovery. Using human 
embryonic stem cell definitive endoderm differentiation as a dynamic 
transition system, we conducted a mid-transition CRISPRi-based enhancer 
screen. We discovered a comprehensive set of enhancers for each of the core 
endoderm-specifying transcription factors. Many enhancers had strong 
effects mid-transition but weak effects post-transition, consistent with the 
nonlinear temporal responses to enhancer perturbation predicted by the 
modeling. Integrating three-dimensional genomic information, we were 
able to develop a CTCF-loop-constrained Interaction Activity model that 
can better predict functional enhancers compared to models that rely on 
Hi-C-based enhancer–promoter contact frequency. Our study provides 
generalizable strategies for sensitive and systematic enhancer discovery in 
both normal and pathological cell state transitions.

Many consortia have made important progress in mapping putative 
enhancers based on chromatin accessibility and protein binding in a 
wide range of cell types and tissues1. Harnessing the atlas of enhanc-
ers predicted from chromatin features, functional interrogation with 
large-scale CRISPR screens has successfully identified some enhancers 

with relatively strong impacts on gene expression in various cell lines2–15. 
However, comprehensive enhancer discovery remains challenging. 
In some cases, enhancer perturbation only causes temporary phe-
notypes7,8, while in other cases, the effect of enhancer perturbation 
is mitigated by the activity of ‘shadow’ or redundant enhancers15–21. 
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We further simplified this into a one-dimensional network state 
equation (Fig. 1b), where ψ(t) is a scalar representing the degree to 
which the network is activated (Methods). In the strongly cooperative 
limit, the enhancers together have an activity f (ψ) ≈ ψn where n is a 
typical number of TFs binding at each enhancer. For concreteness and 
simplicity, we will take n = 3, but our conclusions are robust for n ≥ 3. 
Stochastic simulation of this model (Methods) produces distributions 
of cells with either high or low network activity (Fig. 2a). This can be 
understood from stability analysis of this model, by plotting dψ ⁄dt 
versus ψ (Fig. 2b). Over a wide parameter range, the network has three 
fixed points where dψ ⁄dt = 0. Two of these are stable states: the OFF 
state, with low activity where basal activation balances degradation, 
and the ON state, with high activity where enhancer-driven transcrip-
tional activation balances degradation. There is also an intermediate 
unstable fixed point (Fig. 2b), above which the network activity will 
transition to the ON state, otherwise, it will fall to the OFF state. The 
simulation results are in good agreement with single-cell RNA sequenc-
ing (scRNA-seq) experiments sampling every 12 h during hESC-DE 
differentiation (Fig. 2a,c,d). To generalize the definition used in the 
equation, we used the projection of the expression of all TFs along 
principal component analysis (PCA) component 1 to measure the 
network state in each cell (Fig. 2c and Extended Data Fig. 1b,c). The 
scRNA-seq results show a bistable distribution of cell states during 
differentiation as follows: a pretransition steady state, from 0 h to 24 h, 
and a post-transition steady state from 48 h to 72 h, when transcriptome 
profiles are relatively similar over time, and a transitional period, from 
24 h to 48 h, when transcriptome profiles are changing more rapidly 
(Fig. 2c,d and Extended Data Fig. 1d). This transition behavior is also 
predicted in the simulation results (Fig. 2a,b), suggesting that the 
simple dynamic network model is capturing key features of the estab-
lishment of the core circuit in a GRN.

To quantitatively model enhancer perturbation during the cell 
state transition, we decreased the total enhancer strength (c) to varying 
degrees (with constant stimulus strength δ(t)). Mildly decreasing the 
total enhancer strength, which mimics perturbing one of the multiple 
core enhancers flanking a core TF, has a weak effect on both the ON 
and OFF steady states, but has a much stronger effect on the network 
activity required to transition between states (the unstable fixed point 
where dψ/dt = 0 in Fig. 2b), indicating mild enhancer perturbation 

Furthermore, most genetic variants associated with common human 
diseases show relatively modest effects on expression in reporter 
assays22,23. A critical missing element is a quantitative model for how 
multiple enhancers work together at each locus to respond to physi-
ological or experimental perturbations in a nonlinear way through 
altering gene regulatory network (GRN) activity. GRNs control cell 
states through a handful of core transcription factors (TFs), which 
both self-regulate and cooperatively regulate each other through core 
enhancers24. Therefore, we focused on deconstructing the core enhanc-
ers’ activity in the GRN by determining the impact of their perturbation 
on the cell state. We developed a quantitative GRN model to simulate 
the dynamic process of core circuit establishment. The results predict 
that cell states are more susceptible to core enhancer perturbations 
during dynamic cell state transitions compared to post-transition when 
the GRN has been established.

We used guided differentiation of human embryonic stem cells 
(hESCs) to definitive endoderm (DE) as a dynamic system for a dCas9–
KRAB-based CRISPRi screen. The CRISPR library targeted 394 putative 
enhancers surrounding ten core TF loci spanning 40 Mbp genomic 
regions. Using SOX17 as the DE cell state readout25, we identified mul-
tiple enhancers (4–9 per locus) for each of the core DE TFs (EOMES, 
GATA6, MIXL1, and SOX17). This affirms the feasibility of using a single 
core gene as the readout for discovering functional core enhancers 
during cell state transitions. The sensitive screening strategy also 
uncovered 12 enhancers >100 kbp away from the transcription start 
site (TSS) of the target gene, demonstrating the need for enhancer 
discovery beyond the immediate linear neighborhood. The relatively 
comprehensive discovery of functional enhancers allowed us to 
develop a CTCF-loop-constrained Interaction Activity (CIA) model 
that outperformed previous Hi-C contact-based enhancer predic-
tion methods4,26–28. Our network-guided core enhancer mapping 
strategy during cell state transitions and the CIA model provide a 
framework for systematic enhancer discovery applicable not only 
to normal development but also to pathological conditions such as 
diabetes and cancer.

Results
GRN model predicts temporal sensitivity to enhancer 
perturbation
We sought to develop a dynamic GRN model to study the temporal and 
threshold-dependent requirements for enhancers during cell state 
transitions. Our previous studies of cell state transitions24,25,29,30 and 
sequence-based modeling24,31,32 of a broad range of ENCODE epigenomic 
profiling data have identified key features of this model. Machine learn-
ing applied to chromatin-accessible peaks identifies a small set of 5–10 
lineage-determining core TFs in each cell type whose binding sites can 
predict chromatin-accessible peaks to a high degree of accuracy24,31,32. 
Each chromatin-accessible peak contains combinations of multiple 
binding sites for these core TFs. Thus, the lineage-determining core 
TFs cooperatively auto-regulate each other through multiple enhanc-
ers flanking each core TF gene and they coregulate downstream periph-
eral genes (Fig. 1a and Extended Data Fig. 1a), resulting in highly 
nonlinear regulation of gene expression. Here we describe the activity 
of the network with a time-dependent state variable, ψ(t), whose ampli-
tude reflects the activity of the core TFs that determine the network 
state, which we use interchangeably with the term ‘cell state’ (Fig. 1b). 
Each gene is expressed at an activated level (e1) with probability 
pon ∼ cf (ψ) and at the basal level (e0) with poff ∼ b. f (ψ) is a nonlinear 
function of the core TF activity, which reflects co-operativity at the 
enhancers, and f(ψ) can be modulated through the parameter c  
(for example, via CRISPRi). To simulate dynamic cell state transitions, 
we allow a time-dependent differentiation stimulus δ(t) that acts at the 
enhancers through a separate mechanism (for example, differentiation 
signaling), so pon ∼ cf (ψ) + δ (t). Finally, we add degradation or export 
of the TFs (−rψ) and a stochastic noise term, ξ(t).
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Key features:

ƒ( ) ~ n: autoregulatory enhancer activation
: describes time evolution of network activity

e0: low basal transcription
e1: high enhancer activated transcription

: transition inducing stimulus
c: modulation of enhancer strength

Fig. 1 | Dynamic gene regulatory network model. a, The schematic 
representation of the core circuit in the GRN. The core TFs cooperatively 
auto-regulate each other and coregulate downstream peripheral genes.  
b, The equation of the dynamic GRN model.
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could delay the cell state transition without dramatically changing the 
final network state (Fig. 2b,e, left). We also simulated enhancer pertur-
bation in a steady state by decreasing the total enhancer strength (c) 
after cells have transitioned. Compared with the simulation during the 
forward cell state transition, the same enhancer perturbations show 
much weaker effects in steady state (Fig. 2e). These results indicate 
that a time window exists during cell state transitions where enhancer 
perturbation screens will be more sensitive than screens conducted at 
a steady state. We further validated the results of the network model 
(Fig. 1b) with stochastic Gillespie simulations33,34 under the same non-
linear autoregulatory assumptions. These simulations reproduce the 
main findings of the sensitivity to enhancer perturbation during the 
transition, temporal delay in the transition and relative insensitivity to 
enhancer perturbation after the GRN is fully activated in the ON state 
(Extended Data Fig. 1e; Methods).

Systematic identification of core TFs in hESC-DE transition
To discover core enhancers in cell state transitions, we used hESC-DE 
differentiation as a test case, for which core enhancers remain 

incompletely defined35. Optimization of our existing differentiation 
protocol25 allowed us to reproducibly generate >95% SOX17+/CXCR4+ 
DE cells 72 h after the initiation of DE differentiation (DE-72 h; Extended 
Data Fig. 2a; Methods). To identify core enhancers, we first took a sys-
tematic approach to define core TFs (Fig. 3a). Because OCT4 (POU5F1), 
NANOG and SOX2 are well-known TFs essential for the ESC identity36, we 
focused on identifying core TFs for the acquisition of the DE identity. 
After analyzing our previous genome-scale CRISPR–Cas9 screening 
data for genes regulating hESC-DE transition25, we selected four core DE 
TFs (EOMES, MIXL1, GATA6 and SOX17) and three signaling TFs (SMAD2, 
SMAD4 and JUN; Fig. 3b and Extended Data Fig. 2b). The DE and ESC 
TFs showed opposing changes in gene expression during hESC-DE 
transition with corresponding changes in their regulatory activities 
predicted by gkm-SVM24,31 trained on the ATAC-seq data (Fig. 3c–e and 
Extended Data Fig. 2c,d). Analysis of gene expression from scRNA-seq 
data (collected every 12 h during hESC-DE transition) using the  
Pearson correlation as the distance metric for UMAP visualization 
further demonstrated that the expression patterns of DE and ESC TFs 
clustered separately, and they each correlated among themselves  
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Fig. 2 | Dynamic gene regulatory network model predicts temporal 
sensitivity to enhancer perturbation during cell state transition. a, The violin 
plots of core circuit establishment during cell state transition by simulation. 
b, Plot of dψ⁄dt versus ψ showing cell state transition with different enhancer 
strengths. The green line represents the total enhancer strength without 
perturbation. The cyan line represents the total enhancer strength reduced 
to 70% of full strength by perturbation. The purple line represents the total 
enhancer strength reduced to 30% of full strength by perturbation. c, PCA of all 
TFs from scRNA-seq data collected every 12 h during hESC-DE transition. Each 

dot represents a cell. The large circles represent the average of all cells from the 
same time point (filled with the same color). d, The violin plots of core circuit 
establishment during hESC-DE transition by scRNA-seq experiments. e, The 
comparison between the same enhancer perturbation strength during cell state 
transition or at steady state. The line plots represent the median of simulation 
results. The violin plots correspond to a zoomed-in time interval denoted by 
the gray box on the line plots. The green, cyan, purple, yellow and orange lines 
represent 100%, 70%, 30%, 10% and 0% of the original total enhancer strength, 
respectively.
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(Fig. 3c and Extended Data Fig. 2d; Methods). Compared to the ESC and 
DE TFs, the signaling TFs showed less dynamic changes in transcrip-
tional and regulatory activities during differentiation (Fig. 3d,e and 
Extended Data Fig. 2c,d). We further conducted chromatin immuno-
precipitation followed by mass spectrometry (ChIP–MS) for EOMES, 
GATA6 and SOX17. The proteomics data highlighted that all three TFs 
interacted with each other, and they also interacted with many com-
mon partners including the DE TF MIXL1 and the signaling TF SMAD4 
(Fig. 3f, Extended Data Fig. 2e and Supplementary Table 1). In summary, 
we identified ten core TFs for our study by using functional genomics 
data and corroborating our findings with gene expression, chromatin 
accessibility and proteomics data (Fig. 4a).

Discovery of core enhancers in hESC-DE transition
To discover core enhancers, we examined 4 Mbp genomic regions 
surrounding each of the ten core TFs and identified 394 regions that 
are accessible at either ESC or DE stage (including those accessible 
at both stages) based on ATAC-seq (excluding promoter regions). 
We designed a tiling gRNA lentiviral library targeting these regions 
with 11,050 total gRNAs (including controls; Fig. 4a, Extended Data 
Fig. 3a–d and Supplementary Table 2). We generated an hESC line 
with a doxycycline-inducible dCas9–KRAB cassette and a DE lineage 
reporter SOX17eGFP/+ (Extended Data Fig. 4a–d; Methods) and infected 
the cells with the gRNA library at a multiplicity of infection (MOI) of 
~0.3 to ensure that most infected cells received a single gRNA (Fig. 4a).  
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Fig. 3 | Systematic identification of core TFs during ESC-DE cell state 
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Based on flow cytometric analysis for SOX17–GFP expression dur-
ing differentiation (Extended Data Fig. 2a), as well as PCA analysis 
of scRNA-seq, RNA-seq and ATAC-seq data, we identified DE-36 h as 
an optimal mid-transition point for interrogation of enhancer per-
turbation effects (Fig. 2c,d, Fig. 3d,e and Extended Data Fig. 2c,d). 
SOX17–GFP+ (top 20%) and SOX17–GFP− (bottom 20%) cells were iso-
lated through fluorescence-activated cell sorting (FACS) for gRNA 
enrichment analysis (Fig. 4a; Methods). We calculated the z score 
for each gRNA based on its logarithm of fold change (log2(FC)) in the 

SOX17–GFP− versus the SOX17–GFP+ cells (Fig. 4b). Most gRNAs in 
the same hit regions had similar z scores (Extended Data Fig. 3e,f), 
supporting that the screen is both sensitive and robust. Through cal-
culating the average gRNA z score for each region, we discovered 29 
enhancer hits with z scores ranging from 0.75 to 7.14 (Fig. 4c and Sup-
plementary Table 3). Relatively few enhancers were found for the ESC 
and signaling TFs, likely reflecting that the ESC TFs mainly exert their 
regulatory effects at the ESC stages and that the signaling TFs are pri-
marily regulated post-transcriptionally (for example, through protein 
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phosphorylation). In contrast, we discovered many enhancers for the 
core DE TFs, ranging from 4 to 9 for each gene (Fig. 4c, Extended Data 
Fig. 3f and Supplementary Table 3). These findings demonstrate the 
high sensitivity of the screening strategy using a dynamic transition 
and a single gene readout (for example, SOX17 for the DE identity) for 
the discovery of core enhancers in multiple loci. Most of these enhanc-
ers were previously unknown, and their discovery expands the atlas of 
regulatory elements required for human development and provides 
a basis for understanding the complex GRNs that govern cell state 
transitions. Furthermore, 41% of the identified core enhancers are 
more than 100 kbp away from the TSS of the cognate gene (Fig. 4d), 
highlighting the need for examining putative enhancers in relatively 
broad genomic windows.

Core enhancers show temporal sensitivity to perturbation
Individual CRISPRi perturbations of all 20 top enhancer hits resulted in 
substantially reduced numbers of SOX17–GFP+ cells at DE-36 h based on 
flow cytometric analysis (Fig. 5a,b). We also confirmed the downregula-
tion of the corresponding cognate gene expression after perturbation 
by real-time quantitative PCR (RT–qPCR) analyses (Extended Data 
Fig. 5a). In contrast to the strong phenotypes observed at DE-36 h, at 
DE-72 h, the perturbations of most of the top 20 enhancers had little 
or no impact on the induction of SOX17–GFP+/CXCR4+ cells or their 
cognate gene expression (Fig. 5a–d and Extended Data Fig. 5a,b), 
which is reminiscent of the temporarily phenotypic enhancers previ-
ously described7,8. To investigate the enhancer perturbation effect 
on hESC-DE transition with a finer temporal resolution, we focused 
on two GATA6 enhancers (GATA6e+9 and GATA6e+12) and measured 
the differentiation efficiency based on SOX17 expression every 6 h. 
Consistent with our dynamic GRN model (Fig. 2e), the results show 
exquisite temporal sensitivity to enhancer perturbations—a significant 
impact was observed only in a narrow time window during the transition  
(Fig. 5e,f). In summary, our CRISPRi screening and individual enhancer 
perturbation results show that the expression of core TF genes is fre-
quently regulated by multiple enhancers, ensuring robustness in the 
regulatory network. Perturbing a single enhancer can substantially 
decrease target gene expression and delay cell state transitions, but 
most perturbations do not substantially alter the post-transition state. 
The consistency of our experimental results with our dynamic GRN 
model suggests a cooperative autoregulatory mechanism underlying 
this effect. Together they support the utility of cell state transitions 
in perturbation screens as a generalizable approach for sensitized 
enhancer discovery.

Enhancer deletions exert stronger impacts than CRISPRi
We reasoned that the GRN is robust in part because multiple enhanc-
ers could interact additively or synergistically at a locus to regulate 
target gene expression. We applied CRISPR–Cas9 to generate single and 
double deletions of GATA6e+9 and GATA6e+12 (Fig. 6a and Extended 
Data Fig. 5c). The deletion of both GATA6 enhancers showed a stronger 
impact on transition efficiencies compared to the expected additive 
effects of individual enhancer deletions at both DE-36 h and DE-72 h 
(Fig. 6b and Extended Data Fig. 5d,e). These results support synergistic 
interactions of these two core GATA6 enhancers. Compared to single 
enhancer deletions, the double deletion produced a clearer separation 
of differentiated and undifferentiated cells at DE-72 h. These experi-
mental data closely match results from the dynamic GRN modeling 
(Fig. 6c). We also compared the enhancer deletion results with single or 
double perturbations using CRISPRi and found that the latter had mild 
or no impact at DE-72 h (Extended Data Fig. 5d). Thus, although CRIS-
PRi is more amenable for large-scale enhancer screens than CRISPR–
Cas9-mediated deletion, it may miss bona fide enhancers especially 
when examining the perturbation effects in a steady state. The weaker 
effect of dCas9–KRAB could be due to competition with endogenous 
TFs and other technical differences between CRISPRi and deletion37. 

Overall, our findings demonstrate that the GRN is robust post-transition 
but can still be disrupted with strong perturbations as achieved here 
through the double deletion of GATA6 enhancers.

CIA model improves enhancer prediction
Our CRISPRi screen and validation studies identified multiple enhanc-
ers around the core DE regulator genes (GATA6, EOMES, SOX17 and 
MIXL1; Supplementary Table 4). This high-quality dataset allowed us 
to explore genomic features that can distinguish the enhancers that 
were positive in the screen (hits) from those that were not (nonhits). 
As expected, all enhancer hits for the core DE TFs had elevated levels 
of H3K27ac and increased accessibility during hESC-DE transition, 
accompanied by the binding of DE core TFs EOMES, GATA6 and SOX17 
(Extended Data Figs. 6 and 7). Curiously, we also noticed that the hits 
were often located on one side of the TSS. We performed Hi-C and CTCF 
ChIP–seq experiments in ESC and DE and observed strong concordance 
among bounded domains of increased Hi-C contact frequency (often 
referred to as topologically associated domains or TADs), CTCF loops 
measured by ChIA–PET in H1 hESCs (ref. 38), CTCF loops predicted 
by our loop competition and extrusion model (LE model)39 and CTCF 
binding (Fig. 7a). While Hi-C detects increased interactions between 
the promoter and distal enhancer hits (e.g. SOX17e+10) in DE, Hi-C 
contact frequency between the promoter and distal enhancers is only 
weakly correlated with the effect of enhancer perturbation (Fig. 7b). 
In addition, enhancer hits are often distributed broadly around the 
target gene (Fig. 4d and Extended Data Fig. 3f), while the Hi-C contact 
signals are primarily enriched near the promoter (Fig. 7a). In contrast, 
all the SOX17 enhancer hits fall into a CTCF-loop enclosing the promoter  
(Fig. 7a), both as measured by CTCF ChIA–PET38 and as predicted by 
the LE model39. To quantify, we calculated the Hi-C contact frequency  
(with the promoter) for each enhancer along the locus. We also com-
puted the probability (denoted as P(in loop)) that each distal enhancer 
is enclosed within the same CTCF loop as the promoter, using the ratio 
of the sum of counts for all loops enclosing both enhancer and promoter 
to the sum of all counts for all loops enclosing the promoter (Methods). 
Comparing the genomic intervals with large P(in loop) against those 
intervals with large Hi-C contact frequency, the former is broader and 
encompasses more hits (Fig. 7a). Similar observations hold for the 
other loci (Extended Data Fig. 8a). This suggests that we are less likely 
to miss impactful enhancers based on predictions by their enclosure 
within a CTCF loop than by enhancer–promoter Hi-C contact frequency.

To quantitatively compare the predictive power of these chroma-
tin conformation features individually, we plot precision–recall curves 
for predicting hits (log2(FC) > 0.15) from nonhits for all DE gene enhanc-
ers (Fig. 7c, Extended Data Fig. 8b and Supplementary Table 4).  
P(in loop) is more predictive (area under precision–recall curve 
(AUPRC) = 0.818) than Hi-C contact frequency in DE (AUPRC = 0.692), 
Hi-C contact frequency in ESC (AUPRC = 0.598) or 1/|distance| from the 
promoter (AUPRC = 0.604). Many nonhit enhancers with a high  
P(in loop) have low chromatin accessibility, TF binding and H3K27ac 
(Fig. 7a and Extended Data Figs. 6 and 7). Therefore, we tested all com-
binations of these features and the enhancer–promoter interaction 
information based on CTCF looping or Hi-C, using logistic regression, 
and assessed both AUPRC and correlation with log2(FC) (Fig. 7b,d).  
For the potential enhancers targeted in our study, enclosure  
within a promoter-containing CTCF loop is more predictive than any 
other single feature. Combining interaction information with ATAC, 
H3K27ac and TF binding improves AUPRC, and in all cases, CTCF-loop- 
based models are more predictive than Hi-C contact frequency- 
based models. The combination of CTCF loop, ATAC and H3K27ac 
achieves a very accurate prediction with AUPRC = 0.898. There is a 
further slight improvement by adding core TF binding data from 
EOMES, GATA6 and SOX17 ChIP–seq (AUPRC = 0.925). Adding H3K4me1 
can slightly improve the predictions, but is less informative than 
H3K27ac when either is combined with ATAC and core TF binding 
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(Extended Data Fig. 8c). The ABC model4 combines ATAC and H3K27ac 
into Activity = √ATAC ×H3K27ac  and uses either Hi-C contact fre-
quency or 1/|distance| as contact measurement. We found that CTCF- 
loop-constrained models outperformed both (Fig. 7b,d). Nevertheless, 
we found that combining Activity = √ATAC ×H3K27ac  with CTCF- 
loop information is simpler and performs comparably to logistic 
regression using ATAC and H3K27ac (Extended Data Fig. 8d). The com-
bination of P(in loop) > 0.5 and Activity can classify most hits more 
cleanly than Activity in combination with Hi-C (Extended Data Fig. 8e). 
Our best classification result is with both P(in loop) above a threshold 
near 0.5 and Activity = √ATAC ×H3K27ac  greater than a threshold 
value near 1; as shown in Fig. 7e, almost all hits (green) are correctly 
classified, and most nonhits are correctly classified either by being 
outside a CTCF loop (gray) or below the Activity threshold curve (blue). 
Because both P(in loop) and Activity are required, we will refer to the 

combined rule CIAscore = P (in loop) × Activity  as the CTCF loop- 
constrained Interaction Activity, or CIA model.

We evaluated the generalizability of this model with additional 
CRISPRi datasets from K562 cells9,40. The latter study40 summarized 
screening data from multiple sources4,6,11–15. After mapping gRNAs 
to DNase hypersensitive peaks in K562 cells, we identified 36 hits 
and 414 nonhits around 12 genes from ref. 9 (Extended Data Fig. 9a 
and Supplementary Table 5) and 69 hits and 1862 nonhits from ref. 
40 (Extended Data Fig. 10a and Supplementary Table 6). Again, we 
found that CTCF loop information was more predictive than Hi-C 
contact frequency (Extended Data Fig. 9b and Extended Data Fig. 10b), 
and CTCF loop + Activity was more predictive than the ABC model 
or Hi-C + Activity (Extended Data Fig. 9c,d and Extended Data Fig. 
10c,d). An Activity threshold distinguished hits within loops (Extended 
Data Fig. 9e and Extended Data Fig. 10e). To better compare the CIA 
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Fig. 5 | Validation of identified core enhancers using CRISPRi perturbation. 
a–d, Representative flow plots showing individual core enhancer perturbations 
decrease the hESC-DE transition efficiency measured by SOX17–GFP+ at DE-
36 h (a) and SOX17–GFP+/CXCR4–APC+ at DE-72 h (c). The bar graphs show the 
percentage of SOX17–GFP+ cells at DE-36 h (b) and SOX17–GFP+/CXCR4–APC+ at 
DE-72 h (d). n = 3–9 biologically independent experiments. Error bars indicate 
mean ± s.d. Statistical analysis was performed by two-tailed unpaired multiple 
comparison test with Dunnett correction. e, Violin plots showing the effect 
of GATA6e+9 perturbation on hESC-DE transition efficiency (SOX17 intensity) 

measured every 6 h through flow cytometry. n = 3 biologically independent 
experiments. Solid lines indicate median. Dashed lines indicate quartiles. 
Statistical analysis was performed by two-tailed paired Student t-test with 
mean of each replicate. NS: not significant. f, Heatmap showing the comparison 
between the mean SOX17 expression intensity of cells with nontargeting control 
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flow cytometry during hESC-DE transition. A significant impact was observed 
only in a narrow time window (around DE-36 h) during the transition.
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and ABC models, we integrated all three datasets (current study and  
refs. 9,40). We scaled log2(FC) to ‘effect size’ (Methods) and show the 
effect size versus distance from TSS for all enhancer–promoter pairs 
tested (Fig. 7f). For an equal number of positive predictions by CIA 
and ABC in each dataset (24 + 36 + 69, fixed recall), many strong effect 
enhancers are predicted by both models (yellow). However, the pre-
dictions made by CIA alone (red) have larger effects than predictions 
made by ABC alone (blue). Adding TF binding slightly improves the CIA 
model (Fig. 7d). In the absence of TF binding information, gkm-SVM 
scores can reproduce this small improvement (Extended Data Fig. 8d, 
Extended Data Fig. 9c and Extended Data Fig. 10c). In summary, using 
three large functional enhancer screening datasets, we show that 
enhancer impact is more reliably predicted by enhancer location within 
a CTCF loop than by direct enhancer–promoter Hi-C contact frequency, 
and we constructed a simple predictive model of enhancer impact by 
combining CTCF-loop-constrained interaction and enhancer activity.

Discussion
We performed a CRISPRi screen for enhancers controlling the stimu-
lated hESC-DE transition and discovered many enhancers flanking each 
core DE TF gene. ChIP–seq results show that each of these enhancers is 
bound by multiple core TFs, supporting that cooperative autoregula-
tion through multiple TFs at enhancers is a prevalent feature of GRNs 
controlling cell state. Interestingly, enhancer perturbation delays the 
transition to DE, and the effect of enhancer perturbation is almost neg-
ligible after the transition to DE has been completed. A similar delayed 
phenotype in response to enhancer perturbation has been observed 
at the Hox cluster in flies41 and mice42,43. Simulations of the hESC-DE 
transition using our dynamic GRN model agree with the observation 

of a delayed transcriptional response to enhancer perturbation and 
show that nonlinear saturation of enhancer activity post-transition 
is responsible for this robustness once the GRN has fully activated 
the core TFs. In our simulations, the hysteresis of the GRN occurs via 
autoregulatory enhancer activity coupled with the translation of the 
TFs, which is at a longer time scale than simulations of nonlinearities 
that may also be present at the time scale of transcriptional activation44. 
Together, these observations provide a plausible explanation for low 
validation rates for intergenic genome-wide association study (GWAS) 
variants when tested individually in the steady state. These enhancers 
may contribute to cell state transitions and cell abundance while not 
strongly affecting transcript levels when tested in the established state. 
This suggests a direct mechanism by which enhancers may contribute 
to human disease even in the absence of strong effects in post-transition 
cells, and recent reports have emphasized that cell type abundance 
quantitative trait loci (QTLs) can have a profound impact on human 
phenotypes45–47. Our results predict that screens designed to target 
enhancers during a cell state transition will have a greater sensitivity. 
In addition, one may explore ways to weaken the GRN (for example, 
through manipulating a core TF or enhancer) to increase its vulner-
ability to further enhancer perturbation, as suggested by the GATA6 
enhancer double deletion studies. Beyond developmental cell fate 
changes, we envision that stimulating physiological or pathological 
cell state transitions can accelerate the discovery of disease-relevant 
enhancers or variants.

The sensitivity of our screen also allowed us to find that most 
functional enhancers fell within CTCF loops, leading us to propose an 
interaction model whereby CTCF loops constrain enhancer interac-
tions and activity (CIA model). Our large number of validated enhancers 

c

GATA
6e+

9/G
ATA

6e+
12

double delWT

GATA
6e+

12 
del

GATA
6e+

9 del

10

14

Experiment

lo
g 2(

SO
X1

7 
in

te
ns

ity
)

b GATA6e+9
del vs WT

GATA6e+12
del vs WT

GATA6e+9/GATA6e+12
double del vs WT

DE-72 h

DE-36 h
31.938.4 13.6

75.0 46.690.6

102 103 104 105

102 103 104 105

102 103 104 105

102 103 104 105

102 103 104 105

102 103 104 105

SOX17–GFP

N
or

m
al

iz
ed

to
 a

re
a

SOX17–GFP

N
or

m
al

iz
ed

to
 a

re
a

74.2 74.2 74.2

96.0 96.0 96.0

WT Enhancer deletion

WT

GATA
6e+

12 
del

GATA
6e+

9 del

10

14

lo
g 2(

SO
X1

7 
in

te
ns

ity
)

Experiment

GATA
6e+

9/G
ATA

6e+
12

double del

ATAC_DE

GATA6e+9 GATA6e+12

GATA6e+9
del

GATA6e+12
del

WT

WT

GATA6e+9/
GATA6e+12
double del

gRNA gRNA gRNA gRNA

Deletion

Deletion

Deletion Deletion

Cas9 deletion

Enhancer Gene

a

−2

0

2

SimulationDE-36 h

c =
 c WT

c =
 90% c WT

c =
 70

% c WT

c =
 50% c WT

c =
 c WT

c =
 90% c WT

c =
 70

% c WT

c =
 50% c WT

−2

0

2

SimulationDE-72 h

lo
g 2(

)
lo

g 2(
)

Fig. 6 | Validation of identified core enhancers using CRISPR–Cas9-mediated  
deletion. a, Schematics of GATA6e+9 del, GATA6e+12 del and GATA6e+9/GATA6e+ 
12 double del hESC lines generation using two pairs of gRNAs with Cas9. b, Flow 
plots showing GATA6 core enhancer del reduced hESC-DE transition efficiency at 

DE-36 h and DE-72 h. c, The comparison between the simulation and experiment 
results of the impact of different levels of enhancer perturbation on cell state 
transition. Solid lines indicate median. Dashed lines indicate quartiles.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01450-7

dcb

e

a

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1.0

Recall
0 0.2 0.4 0.6 0.8 1.0

CTCF loop + ATAC + H3K27ac + TFs:
CTCF loop + ATAC + H3K27ac:
CTCF loop: 
Hi-C + ATAC + H3K27ac + TFs: 
Hi-C + ATAC + H3K27ac: 
Hi-C: 

0.925
0.898
0.818
0.786
0.762
0.692

Recall

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

CTCF loop: 
Hi-C_DE: 
Hi-C_ESC: 
1/|dist|:

0.818
0.692
0.598
0.604

f

Hits (all in loop)

Nonhits (in loop)

Nonhits (not in loop)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1

2

3

ATAC

H
3K

27
ac

log2FC:
2.5
1.0
–0.5

Sc
al

ed
 e

�e
ct

 s
iz

e

0 10 20 30 40 50
10

0
15

0
20

0
25

0
1,0

00
2,0

00
–0.5

0

0.5

1.0

1.5

Abs distance to TSS (kbp)

Hi-C_ESC promoter contact

Hi-C_DE promoter contact

P(in loop)

CRISPRi screen
enhancer/nonhits

ATAC_DE

CTCF_ESC

CTCF_DE

MRPL15
SOX17 RP1Gene LYPLA1

(0–4.49)

(0–1.0)

(0–1.0)

(0–1.0)

Hi-C_ESC

Hi-C_DE

(0–1.5)

(0–1.5)

CTCF ChIA–PET_ESC
Loop extrusion

model_DE

chr8:54,100,000 54,400,000 54,700,000

Reads per 5 kbp bin

1 10 20

Core TFs

ATAC

H3K27ac

1/|dist|

Hi-C

ATAC

TFs + H3K27ac + ATAC

H3K27ac + ATAC

CTCF loop

CTCF
loop and

ATAC

TFs + H3K27ac + ATAC

H3K27ac + ATAC

Original
(Hi-C.Activity)

Power law
(Activity/|dist|)

Hi-C and

ABC
model

0 0.25 0.50 0.75

Score
1.00

AUPRC
Corr

Top 129 predictions in both models

Top 129 predictions only in CIA
Top 129 predictions only in ABC

Other

Fig. 7 | The CIA model provides improved enhancer prediction. a, Hi-C-based 
and CTCF-loop-based chromatin conformation analysis at the SOX17 locus. 
b, Bar plots comparing the AUPRC and Spearman correlation scores between 
single chromatin feature-based, Hi-C-based or CTCF-loop-based enhancer 
prediction model with the ABC model. c, A precision–recall plot comparing the 
performance for prediction of enhancer hits from the screen using P(in loop, 
red), DE Hi-C (blue), ESC Hi-C (yellow) and enhancer–promoter distance (black). 
d, A precision–recall plot comparing the performance for prediction of enhancer 
hits from the screen using CTCF loop (solid line) and Hi-C (dash line) with or 
without additional chromatin feature combination. e, A scatter plot showing 
the combinatory criteria of P(in loop), H3K27ac and ATAC can clearly separate 
the hits (green) and nonhits (blue and gray). P(in loop) > 0.5 is used to justify the 

enhancers, and targeting promoters are in the same CTCF loop (green and blue). 
The solid line represents the threshold value (criteria) of Activity = 1. The size of 
each dot represents the log2(FC) of each enhancer from the screen. f, A scatter 
plot showing the comparison between the CTCF loop-CIA and activity-by-contact 
(ABC) model with all three datasets (ESC-DE, K562 Reilly9 and K562 Nasser40). 
The numbers of selected top predictions are based on the hits identified from 
each dataset, including top 24 predictions from ESC-DE, top 36 predictions from 
K562 Reilly and top 69 predictions from K562 Nasser. Yellow dots represent top 
predictions in both models. Red dots represent top predictions only in the CIA 
model. Blue dots represent top predictions only in the ABC model. Gray dots 
represent regions that do not belong to top predictions. The effect sizes from 
each dataset are scaled to reach the same threshold (~0.1 dashed line).
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allowed comparisons between alternative hypotheses and showed that 
the CTCF constraint is substantially more predictive than Hi-C-based 
measurements of contact frequency between the enhancer and target 
promoter. Many distal enhancer hits within CTCF loops have a large 
transcriptional impact but relatively low enhancer–promoter contact 
frequency as measured by Hi-C. Adjusting for the distance-dependency 
in Hi-C data through simple power law distance corrections did not sub-
stantially improve AUPRC (Methods), but it may be possible to improve 
the predictions by developing newer methods based on Hi-C data or 
combining Hi-C with CTCF and other datasets. Mechanistically, while 
the prevailing model supports that transcriptional activity depends on 
enhancer–promoter contact, our observation of multiple enhancers 
implies a highly nonlinear relationship between contact frequency and 
transcription. This notion is supported by recent studies suggesting 
that contact probability has a nonlinear impact on transcription44,48. 
Through simulations, multiple plausible mechanisms have been shown 
to generate this nonlinear relationship, including accumulation of 
promoter-bound factors or post-transcriptional modifications at the 
promoter44. Instead of relying on direct enhancer–promoter contact 
frequency measurements from Hi-C data, our CIA model uses CTCF 
loop information to constrain enhancer prediction. This simple CIA 
model should be quite useful for prioritizing and understanding SNPs 
implicated in expression QTLs or GWAS-associated loci.

Our CIA model is a quantitative improvement over the ‘insulated 
neighborhood’ hypothesis49 and is consistent with many studies show-
ing that enhancer activity is largely restricted within CTCF loops and 
TADs48,50,51 and that TAD disruption can lead to oncogenic misexpression 
and developmental diseases52,53. The CTCF loops are visually consistent 
with Hi-C TADs. However, TAD calling can be unstable and sensitive 
to parameters and methods. In comparison, P(in loop) calculates the 
probability that a genomic region is enclosed within a CTCF loop, thus 
providing a more reliable measurement. However, there are also seem-
ingly conflicting findings that auxin degradation of CTCF can only have a 
modest effect on transcription on a short time scale54. We speculate that 
during cell state transitions, CTCF-mediated enhancer–promoter prox-
imity is necessary for establishing de novo enhancer–protein–promoter 
complexes, while in post-transition steady states, this proximity may be 
maintained for short times without the CTCF loop. Our dynamic GRN 
model shows a similar result that once the active transcriptional state is 
established, the transcriptional response to a perturbation of enhancer 
activity occurs at a much longer time scale (Fig. 2e). The hysteresis in 
our model thus provides a plausible explanation for the long-standing 
paradox that CTCF is required to restrict enhancer activity, yet removing 
CTCF does not immediately affect transcription.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Ethics statement
Experiments with hESCs were conducted per National Institute of 
Health (NIH) guidelines and approved by the Tri-SCI Embryonic Stem 
Cell Research Oversight Committee.

Cell lines and culture conditions
iCas9 SOX17eGFP/+ HUES8 and idCas9–KRAB SOX17eGFP/+ HUES8 hESCs 
were cultured on vitronectin-coated (Gibco, A14700) plates and main-
tained in E8 medium (Gibco, A1517001). Cells were dissociated by 
3–5 min treatment with 0.5 mM EDTA in 1× DPBS without calcium and 
magnesium at room temperature. A total of 10 μM ROCK inhibitor 
Y-27632 (Selleck Chemicals, S1049) was added into the E8 medium for 
the first 24 h after passage. The medium was changed every day. hESCs 
were passaged every 3–4 d depending on the cell growth speed and 
confluency. All cell lines were routinely tested by Memorial Sloan Ket-
tering Cancer Center (MSKCC) Antibody and Bioresource Core Facility 
to confirm there was no mycoplasma contamination and by MSKCC 
Molecular Cytogenetics Core to confirm there were no karyotyping 
abnormalities.

hESC-DE differentiation
We found that DE differentiation is more robust when using hESCs 
during the logarithmic growth phase. To optimize the differentiation, 
cells were maintained in the logarithmic phase before seeding for DE 
differentiation with a recovery passage as follows. Please note that the 
cell numbers described below were optimized based on the growth of 
the HUES8 hESCs in our laboratory, and they may need to be adjusted 
for other hESC lines. hESCs were dissociated with 1× TrypLE Select 
(Gibco, 12563029) for 3 min at room temperature. Then TrypLE was 
removed, and cells were washed and resuspended into E8 medium with 
10 μM ROCK inhibitor Y-27632. Cells were counted by using Vi-CELL 
XR Cell Viability Analyzer (Beckman Coulter), and 2–3 million cells 
were seeded per 10-cm plate with E8 medium containing 10 μM ROCK 
inhibitor Y-27632. The E8 medium was refreshed daily, and the cell 
number should reach 10–12 million per 10-cm plate 2 d after seeding. 
hESCs after the recovery passage were collected and counted again, as 
described above, and 1 million cells per well were seeded in a six-well 
plate in E8 medium with 10 μM ROCK inhibitor Y-27632; and 18 h later, 
hESCs were changed into fresh E8 medium. At 24 h after seeding, hESCs 
should reach 2–2.4 million per well and be ready for differentiation. 
For DE differentiation, hESCs were first washed with 1× DPBS once and 
then cultured in 2.5 ml S1/2 differentiation medium daily, as previously 
described25,55—cells were treated with 50 ng ml−1 Activin A (Bon-Opus 
Biosciences, C687-1MG) for 3 d and 5 μM CHIR99021 (Tocris Bioscience, 
4423) for the first day.

scRNA-seq
scRNA-seq was performed as previously described56. Cells were col-
lected every 12 h during DE differentiation for scRNA-seq experiments 
with a targeted collection ranging from 3,000 to 6,000 cells. Single-cell 
3′ RNA-seq libraries were generated with 10x Genomics Chromium Sin-
gle Cell 3′ Reagent Kit v.3 following the manufacturer’s guidelines using 
10x chromium controller firmware v5.0. The libraries were sequenced 
on NovaSeq 6000 platform following the manufacturer’s guidelines.

scRNA-seq PCA analysis
Chromium v3 analysis software Cell Ranger (version 3.1.0) was run 
using ‘cellranger count –expect-cells 1000.’ Genes with fewer than ten 
reads summed over all cells were removed, yielding 21,099 transcripts 
detected across 35,988 cells, approximately 5,000 cells per time point. 
The cells ranked in the bottom 10% of the total transcript number per 
cell were removed from further analysis. For PCA, we further restricted 
the analysis to transcripts whose s.d. across the seven-time points was 
greater than 0.2.

scRNA-seq gene expression correlation analysis
Per best practices of the Seurat package (version 4.1.1) (ref. 57), the 
quality control of cells included the number of features found in a cell 
and the percentage of tags mapped to the mitochondrial chromosome. 
For ESC, DE-12 h, DE-24 h, DE-36 h, DE-48 h, DE-60 h and DE-72 h cells 
with the following number of features were kept, respectively, 1 K–4 K, 
1.5 K–5 K, 1.8 K–5 K, 2 K–5 K, 1.5 K–4 K, 1.8 K–5 K and 2 K–6 K. Additional 
mitochondrial gene percentage filters were applied as follows: 5–20%, 
5–25%, 5–20%, 5–20%, 5–1%, 5–20% and 0–20%, respectively.

The data slot in the assay of the Seurat object, equivalent to the 
scaled expression of genes in cells, was used for gene-wise visualization 
by UMAP. For selecting the relevant expressed genes, each gene was 
applied a filter where the percentage of nonzero expression in cells 
was at least 55% at any time point. We focused on relevant expressed 
genes by removing mitochondrial, ribosomal, miRNAs, lincRNAs, 
antisense transcripts and genes that were not yet named (for example, 
those containing orf and starting with AC or AL). The matrix from the 
2,606 relevant expressed genes, after transposition for gene-centric 
embedding, was embedded in UMAP using the R package umap, using 
the Pearson correlation as the distance metric of umap.config. Each 
point was labeled with the color scale defined from the expression FC 
from ES to DE-72 h.

GRN model
The network state in our GRN model is described by a vector of core TF 
concentrations ψ = (ψ1, ψ2,…,ψn) = (ψi=1‥n). For example, a network with 
three genes and ψ = (A,B, C)  is shown in Fig. 1a. Each component TF 
gene i is described by an equation similar to Eq (1):

dψi
dt

= −riψi +
ei1 (ci fi (ψi=1.n) + δi (t))
bi + ci fi (ψi=1.n) + δi (t)

+ ei0bi
bi + ci fi (ψi=1.n) + δi (t)

+ ξ (t)ψi.

The activation probabilities for gene i are pon ∼ ci f (ψi=1.n) + δi (t)  
and poff ∼ bi, so together the probability that gene i is activated and 
transcribed at rate ei1 is (ci fi (ψi=1.n )+δi (t))

bi+ci f(ψi=1.n )+δi (t)
, and the probability that gene  

i is transcribed at basal rate ei0 is bi
bi+ci f(ψi=1.n )+δi (t)

, with parameters bi, ci and 
δi (t) specific to each core TF in the network. Each term fi (ψi=1.n) will be 
a function of the activity of the core TFs binding gene i’s enhancers. As 
a consequence of strong nonlinear co-operativity, we now make the 
simplifying assumption that the core TFs turn on synchronously 
(α1ψ1 ≈ α2ψ2 ≈ … ≈ αnψn) where αi = 1‥n are constants. This allows us to 
approximately represent the entire network activity with the scalar 
ψ (t) and replace the gene-specific enhancer activities with an average 
enhancer activity for each core TF gene, fi (ψi=1.n) ≈ cψn, where n now 
represents an average degree of co-operativity and could arise from 
either individual TF co-operativity at an enhancer or from multiple 
enhancers interacting nonadditively. Because the probability that the 
gene is activated quickly saturates at large ψ, the precise form of this 
nonlinearity does not strongly affect the results, as long as n ≥ 3.  
We similarly replace gene-specific rates bi, ci and δi(t) with weighted 
averages, leading to the model equation in Fig. 1b. This equation  
was solved by the Euler–Maruyama method using parameters 
(b, c, e0, e1, r,n) = (.5, 1, .1, 3, 1, 3)  unless stated otherwise, and with nor-
mally distributed noise ξ(t) with amplitude ξ0 = 0.4 . For e1 ≫ e0, the  
OFF fixed point is at ψ ≈ e0/r  and the ON fixed point is at ψ ≈ e1/r   
and both are stable for c ≳ br/e1 and n ≥ 3. The stimulus δ(t) was mod-
eled as δ (t) = δ0(1 + erf ((t − t0)/2√2))/2, with δ0 = 0.035, which turns on 
smoothly at t = t0, to model the sustained effect of Activin A in the 
experiments, which is known to act through WNT/nodal signaling. The 
stimulus produces a weak increase in enhancer activity (pon), which is 
independent of ψ, and is therefore independent of core TF network 
activity. Although the bifurcation and stability results are valid for any 
e1 ≫ e0  and c ≳ br/e1  and n ≥ 3, the parameters δ0, ξ0, e1, and  e0 were 
chosen to approximately match the distributions of SOX17 expression 
levels and population variation in the FACS data. A model with a similar 
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mathematical form was previously derived to model cellular differen-
tiation induced by MAPK signaling and was also shown to admit bistable 
solutions58,59.

Stochastic Gillespie simulations
The stochastic Gillespie algorithm was used to simulate a strongly 
nonlinear cooperative autoregulatory gene circuit model33,34, analo-
gous to the rate equation Fig. 1b but also valid for arbitrarily small 
numbers of molecules. In this model, up to three molecules of the TF 
A sequentially bind to an enhancer (E), and the differentially bound 
TF-enhancer complexes are denoted as EA, EAA and EAAA. The eight 
possible reactions, their probabilities, ai, and their impact on molecular 
species numbers are given as follows, where XM indicates the number 
of molecules of species M:

ProductionofA∶ XA+1
a1=cbt + cet1 ⋅ XEA

+cet2 ⋅XEAA + cet3 ⋅XEAAA

Degradation ofA∶ XA − 1 a2=cd ⋅XA

Binding ofA to E∶ XEA + 1,XE−1,XA−1 a3=cf1 ⋅XA ⋅XE

Unbinding ofA from EA∶ XEA − 1,XE+1,XA+1 a4=cr1 ⋅XEA

Binding ofA to EA∶ XEAA+1,XEA−1,XA−1 a5=cf2 ⋅XA ⋅XEA

Unbinding ofA from EAA∶ XEAA−1,XEA+1,XA+1 a6=cr2 ⋅XEAA

Binding ofA to EAA∶ XEAAA + 1,XEAA−1,XA−1 a7=cf3 ⋅XA ⋅XEAA

Unbinding ofA from EAAA∶ XEAAA−1,XEAA+1,XA + 1 a8=cr3 ⋅ XEAAA

Unless noted otherwise, the rates used are (cbt, cet1, cet2, cet3, cf1,
cr1, cf2, cr2, cf3, cr3, cd) =(0.04, 0.04, 0.04,2.4, 0.1, 15, 0.1, 15, 0.1, 15, 0.003). 
The strong co-operativity of enhancer activity is reflected in the fact 
that we chose cet3 ≫ cbt, cet1, cet2. Fifty independent runs, each represent-
ing a single cell, were performed for each datapoint shown. The initial 
enhancer state at t = 0 is given by (XE, XEA, XEAA, XEAAA) = (1, 0, 0,0), and 
the initial number of TFs, XA, was sampled from a uniform distribution. 
The stimulus is modeled by a transitory increase in the initial rate of A 
binding to E, cf1.

Generation of the idCas9–KRAB SOX17eGFP/+ HUES8 hESC line
idCas9–KRAB SOX17eGFP/+ HUES8 hESC line was generated using a cas-
sette switch strategy based on previously established iCas9 SOX17eGFP/+ 
HUES8 hESC line25,60. iCas9 SOX17eGFP/+ HUES8 hESCs were treated with 
10 μM ROCK inhibitor Y-27632 and 2 μg ml−1 doxycycline 1 d before 
transfection. crRNAs that specifically targeted on AAVS1–iCas9 allele 
and tracrRNA were ordered from IDT and cotransfected with AAVS1–
idCas9–KRAB donor vector (Addgene, 199621) into the cells by using 
Lipofectamine Stem Transfection Reagent (Thermo Fisher Scientific, 
STEM00001) following manufacturer’s guidelines. Transfected cells 
were treated by Hygromycin selection for 7 d, and single-cell colonies 
were picked for genotyping. Inducible dCas9–KRAB were validated by 
RT–qPCR and flow cytometry analysis. gRNAs and genotyping primer 
sequences are listed in Supplementary Tables 7 and 8.

ChIP–MS and analysis
ChIP–MS and analysis were performed, as previously described61, 
with minor modifications. Antibodies used for immunoprecipitation 
are listed in Supplementary Table 9. Briefly, ChIP–MS was performed 
using the same ChIP protocol as in ChIP–seq. In total, 30–40 million 
cells per sample were crosslinked with 1% formaldehyde and then lysed 
and sonicated. Clear supernatant was collected for chromatin immu-
noprecipitation. Total protein was eluted after immunoprecipitation 
by incubation with 5% SDS and 5 mM DTT at 98 °C for 5 min. Then pro-
tein samples were alkylated, trypsinized and desalted for LC–MS/MS  
acquisition. For LC–MS/MS acquisition, samples were resuspended 
in 10 μl of 0.1% TFA and loaded onto a Dionex RSLC Ultimate 300  

(Thermo Scientific), coupled with Orbitrap Fusion Lumos (Thermo 
Fisher Scientific). Chromatographic separation was performed with 
a two-column system, consisting of a C18 trap cartridge (300 μm ID, 
5 mm length) and a picofrit analytical column (75 μm ID, 25 cm length) 
packed in-house with reversed-phase Repro-Sil Pur C18-AQ 3 μm resin. 
Peptides were separated using a 60 min gradient from 4% to 30% buffer 
B (buffer A: 0.1% formic acid, buffer B: 80% acetonitrile + 0.1% formic 
acid) at a flow rate of 300 nl min−1. The mass spectrometer was set to 
acquire spectra in data-dependent acquisition mode. Briefly, the full 
MS scan was set to 300–1200 m/z in the orbitrap with a resolution of 
120,000 (at 200 m/z) and an AGC target of 5 × 105. MS/MS was per-
formed in the ion trap using the top speed mode (2 s), an AGC target 
of 10 × 104 and an HCD collision energy of 35.

Each experimental condition was performed with two biological 
replicates. Protein levels were log2 transformed, normalized by the 
average value of each sample and missing values were imputed using 
a normal distribution 2 s.d. lower than the mean before statistical 
analysis. Statistical significance was calculated using a t-test. Specifi-
cally, we used the F test to assess if the replicates for each protein are 
homoscedastic or heteroscedastic (equal or unequal variance). If the 
F test resulted significantly, that is, P < 0.05, we applied the heterosce-
dastic t-test; if not, the homoscedastic. Protein levels from EOMES, 
GATA6 and SOX17 ChIP–MS were further compared to IgG controls, 
and the common interacting TFs with log2(FC) > 2 and −log10(P) > 2 
were used to plot Fig. 3d.

RNA isolation, reverse transcription and RT–qPCR
Total RNA was extracted using Quick-RNA MiniPrep kits (ZYMO 
Research, R1055) following the manufacturer’s guidelines. cDNA was 
produced by using a High Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, 4368817) with 2 μg of total RNA per reaction 
measured by Nanodrop 2000 (Thermo Fisher Scientific). RT–qPCR 
reaction was performed with SYBR Green Master mix (Applied Biosys-
tems, A25742) in the 7500 or QuantStudio 6 Flex Real-Time PCR system 
(Applied Biosystems). GAPDH was used as an internal control. Primers 
used in RT–qPCR are listed in Supplementary Table 8.

RNA-seq
After RiboGreen quantification and quality control by Agilent BioAna-
lyzer, 500 ng of total RNA with RIN values of 6.5–10 underwent polyA 
selection and TruSeq library preparation according to instructions 
provided by Illumina (TruSeq Stranded mRNA LT Kit, RS-122-2102), with 
eight cycles of PCR. Samples were barcoded and run on a HiSeq 4000 
or NovaSeq 6000 platform in a PE50 run, using the HiSeq 3000/4000 
SBS Kit or NovaSeq 6000 SP or S2 Reagent Kit (100 cycles; Illumina).

RNA-seq analysis
We followed the ENCODE RNA-seq processing pipeline, aligning reads 
to hg38 with STAR_2.5.1b and parameters ‘--outFilterMultimapNmax  
20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilter- 
MismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 
--alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 
1000000.’ Transcripts were quantified with RSEM v1.2.23.

ATAC-seq
Profiling of chromatin was performed by ATAC-seq as previously 
described62. In total, 50 K cryopreserved cells were washed in cold 
PBS and lysed. The transposition reaction containing TDE1 Tag-
ment DNA Enzyme (Illumina, 20034198) was incubated at 37 °C for 
30 min. The DNA was purified with the MinElute PCR Purification Kit  
(Qiagen, 28004) and amplified for five cycles using NEBNext 
High-Fidelity 2× PCR Master Mix (New England Biolabs, M0541L). After 
evaluation by real-time PCR, 3–14 additional PCR cycles were done. 
The final product was cleaned by AMPure XP beads (Beckman Coulter, 
A63882) at a 1× ratio, and size selection was performed at a 0.5× ratio. 
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Libraries were sequenced on a HiSeq 4000 or NovaSeq 6000 platform 
in a PE50 run, using the HiSeq 3000/4000 SBS Kit or NovaSeq 6000 S1 
Reagent Kit (100 cycles; Illumina).

ATAC-seq analysis
Paired-end reads were mapped to hg38 with bowtie2 version 2.2.5 
using default parameters, duplicate reads were removed with Picard 
version 2.23.3 and peaks were called using macs2 version 2.2.7.1 and 
parameters ‘macs2 callpeak --nomodel -g hs.’ gkm-SVM (R-package 
version 0.82.0 with L = 11, k = 7, d = 3 and truncated filter) was run on the 
top 10,000 300 bp distal peaks (>2 kbp from TSS) and five independ-
ent GC and repeat matched negative sequence sets following24,31,32. 
The five replicate gkm-weight vectors were averaged and motifs were 
extracted using gkm-PWM.

gRNA design of core enhancer perturbation screen
In total, 2 Mbp upstream/downstream of the ten core TFs were selected 
for further chromatin accessibility filtering. Only the regions showing 
accessibility in either the ESC stage or the DE-48 h stage were kept. 
Regions that overlapped with promoters or exons were removed from 
the list, resulting in 394 putative enhancers being selected in total. 
gRNA design was performed by using CHOPCHOP55 to achieve full-tiled 
coverage of the selected regions. We further added three gRNAs target-
ing SOX17 promoter and 1,100 safe-targeting gRNAs63 as positive and 
negative controls, respectively. gRNA sequences of the library are listed 
in Supplementary Table 2.

Oligo synthesis and library cloning
gRNA oligos were synthesized on-Chip (Agilent). Synthesized oligos 
were amplified and restriction cloned into lentiGuide-puro (Addgene, 
52963) by the MSKCC Gene Editing and Screening Core Facility. Cloned 
plasmid library was PCR amplified to incorporate adapters for NGS. 
Samples were purified and sequenced using Illumina HiSeq 2500 plat-
form. FASTQ files were clipped by position and reads were mapped back 
to the reference library file to show relative abundance of reads per 
gRNA. Reads within each sample were normalized to total number of 
mapped reads and library size. The overall representation of the library 
was charted over a one-log FC to evaluate if any gRNA was over- or 
under-represented in the final library. Primers used for PCR are listed 
in Supplementary Table 8.

Lentiviral library generation
The core enhancer perturbation lentiviral library generation was per-
formed, as previously described25, with minor modifications. Briefly, 
a total of 13.6 μg core enhancer perturbation library plasmids with 
5.44 μg lentiviral packaging vector psPAX2 and 1.36 μg vesicular stoma-
titis virus G envelope expressing plasmid pMD2.G (Addgene plasmids, 
12260 and 12259) were transfected with the JetPRIME (VMR, 89137972) 
reagent into 293T cells to produce the lentivirus. Fresh medium was 
changed 24 h after transfection, and viral supernatant was collected, 
filtered and stored at −80 °C for 72 h after transfection.

Core enhancer perturbation screen
We aimed for a ~1,000-fold coverage per gRNA to maximize sensitivity. 
A total of 35 million idCas9–KRAB SOX17eGFP/+ HUES8 hESCs were col-
lected and infected with the lentiviral library at a low MOI of ~0.3 on day 
0 in 15-cm plates. A total of 6 μg ml−1 protamine sulfate per plate was 
added during the first 24 h of infection to improve the infection effi-
ciency. One day after infection (day 1), cells were treated with 2 μg ml−1 
doxycycline to induce dCas9–KRAB expression, which continues till the 
end of the screen at DE-36 h. Infected cells were selected with 1 μg ml−1 
puromycin from day 2 to day 4 and collected on day 5 for recovery pas-
sage. Two days after recovery passage, 60 million cells were collected 
and seeded into 15-cm plates for DE differentiation, as described above. 
Thirty-six hours after differentiation, cells were dissociated using  

1X TrypLE Select and sorted using FACS Aria according to GFP expres-
sion. Cells whose GFP expression levels were in the top or bottom 20% 
were pelleted individually, with each pellet containing 15 million cells.

gRNA enrichment sequencing and data analysis
The gRNA enrichment sequencing was manipulated by MSKCC Gene 
Editing and Screening Core Facility. Genomic DNA from sorted cell pel-
lets was extracted using the QIAGEN Blood and Cell Culture DNA Maxi 
Kit (Qiagen, 13362) and quantified by Qubit (Thermo Fisher Scientific, 
Q32850) following the manufacturer’s guidelines. A quantity of gDNA 
covering 1000x representation of gRNAs was PCR amplified to add Illu-
mina adapters and multiplexing barcodes. Primer sequences to amplify 
lentiGuide-puro are shown in Supplementary Table 8. Amplicons were 
quantified by Qubit and Bioanalyzer (Agilent) and sequenced on the 
Illumina HiSeq 2500 platform. Sequencing reads were aligned to the 
gRNA library sequences, and counts were obtained for each gRNA.  
The read counts were normalized to total reads of each sample to 
offset differences in read depth. To calculate the z score of each gRNA, 
we subtracted the mean log2(FC) of all negative control safe-targeting 
gRNAs from the log2(FC) of each gRNA and then divided the result by 
the s.d. of log2(FC) from the negative control gRNAs (Supplementary 
Table 2). Off-targets of each gRNA were further assessed by CRISPOR64. 
gRNAs with 0 mismatch (MM) = 1, 1 MM < 10, 2 MM < 30, 3 MM < 100 
and total raw reads > 00 were kept for calculating average z score of 
each putative enhancer region. Putative enhancer regions with less 
than three qualified gRNAs were filtered out (Supplementary Table 3).

Hit validation
Selected gRNAs for each enhancer hit were cloned into lentiGuide-puro 
(for single perturbations) and lentiGuide-blast (when a second pertur-
bation was used in combination; Addgene, 199622). In total, 1.36 μg 
lentiGuide-puro (or lentiGuide-blast), 0.1 μg pMD2.G and 0.4 μg 
psPAX2 plasmids were transfected with the JetPRIME (VMR, 89137972) 
reagent into 293T cells to pack lentiviruses. Viral supernatant was made 
and collected, as described above. idCas9–KRAB SOX17eGFP/+ HUES8 
hESCs were then infected with viruses containing different gRNAs 
individually following the same process as described above for the 
screen. One day after infection (day 1), cells were treated with 2 μg ml−1 
doxycycline to induce dCas9–KRAB expression, which continues till the 
end of the experiment (DE-36 h or DE-72 h). Infected cells were selected 
with 1 μg ml−1 puromycin from day 2 to day 4 and collected on day 5 for 
recovery passage and followed by DE differentiation described above. 
For dual selection, cells were selected with 1 μg ml−1 puromycin and 
10 μg ml−1 blasticidin together for 5 d. Cells were collected at both 36 h 
and 72 h for flow cytometry analysis. gRNA sequences selected from 
the core enhancer validation are listed in Supplementary Table 10.

Flow cytometry
Antibodies used for flow cytometry are listed in Supplementary  
Table 9. For live GFP and surface marker data collection, cells were 
dissociated and stained with DAPI and corresponding antibodies at 
room temperature for 15 min. For TF data collection, cells were first 
stained with LIVE-DEAD Fixable Violet Dead Cell Stain (Invitrogen, 
L34955) at room temperature for 15 min and then fixed with Fixation/
Permeabilization reagent (Invitrogen, 00-5223-56/00-5123-43) and 
stained with corresponding antibodies using Permeabilization buffer 
(Invitrogen, 00-8333-56). Flow cytometry data were collected using BD 
LSRFortessa or BD LSRII with BD FACSDIVA. Flow cytometry analysis 
and figures were generated in FlowJo v10.

Generation of clonal enhancer KO hESC lines
Enhancer KO hESC lines were generated by using two paired crRNAs sur-
rounding targeted enhancers to increase knockout efficiency. crRNAs 
and tracrRNA were ordered from IDT. iCas9 SOX17eGFP/+ HUES8 hESCs 
were treated with 2 μg ml−1 doxycycline and 10 μM ROCK inhibitor 
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Y-27632 for 24 h, dissociated with 1X TrypLE Select and transfected 
with 0.15 μM of each crRNA and 0.6 μM of tracrRNA by using Lipo-
fectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific, 
13778100) following the manufacturer’s guidelines. Transfected cells 
were further cultured in E8 with 10 μM ROCK inhibitor Y-27632 for 
48 h and ~2,000 cells were seeded into 100-mm plate to raise colonies. 
Then, the genomic DNA of the individual colony was extracted by using 
DNeasy Blood and Tissue DNA Kit (Qiagen, 69506) for genotyping. 
crRNA and genotyping primer sequences are listed in Supplementary 
Tables 7 and 8.

ChIP–seq
ChIP–seq was performed, as previously described25, with minor modi-
fications. Antibodies used for immunoprecipitation are listed in Sup-
plementary Table 9. For each sample, around 30 million cells were 
crosslinked with 1% formaldehyde and quenched with 0.125 M glycine. 
Fixed cells were then lysed in 700 μl SDS buffer (1% SDS, 10 mM EDTA, 
50 mM Tris–HCl, pH 8), and incubated for 10 min on ice. Sonication was 
performed on a Branson Sonifier 150 set at 30% amplitude for 5 min and 
30 s total on (10-s on/10-s off pulsing). Clear supernatant was collected 
for antibody binding overnight, followed by Dynabeads (Thermo Fisher 
Scientific, 10004D) incubation for 6 h at 4 °C. Then the beads were pel-
leted and washed twice with low salt (0.1% SDS, 1% Triton X-100, 2 mM 
EDTA, 20 mM Tris–HCl, pH 8, 150 mM NaCl), high salt (0.1% SDS, 1% 
Triton X-100, 2 mM EDTA, 20 mM Tris–HCl, pH 8, 500 mM NaCl) and 
TE buffer (10 mM Tris–HCl, pH 8, 1 mM EDTA), respectively. The DNA 
was eluted from the beads by incubating in elution buffer (1% SDS, 0.1 M 
NaHCO3) at 65 °C for 15 min and decrosslinked with 5 M NaCl at 65 °C 
overnight. A total of 10 μl (0.5 M) EDTA, 20 μl (1 M) Tris–HCl (pH 6.5) 
and 1 μl Proteinase K (20 mg ml−1) were added to decrosslinked prod-
uct and incubated for 1 h at 45 °C. DNA was isolated by using QIAquick 
PCR purification kit (Qiagen, 28104). Then the sequencing library was 
generated by using the NEBNext Ultra II DNA Library Prep Kit (New 
England Biolabs, E7103S) and NEBNext Multiplex Oligos for Illumina 
(New England Biolabs Index Primers Set 1; NEB, E7335S). Samples were 
pooled and submitted to MSKCC Integrated Genomics Operation core 
for quality control and sequencing on Illumina HiSeq 4000 platform.

ChIP–seq/ChIA–PET analysis
Paired-end reads were mapped to hg38 with bowtie2 version 2.2.5 
using default parameters, and peaks were called using macs2 version 
2.2.7.1 using parameters ‘macs2 callpeak --nomodel -g hs.’ Processed 
ChIA–PET bedpe files for K562, GM12878 (ref. 65), H1 and HUVEC38 were 
downloaded from encodeproject.org.

Hi-C
Two million cells were collected and fixed with 1% formaldehyde. The 
subsequent steps of Hi-C were then performed using the Arima-Hi-C kit 
(Arima, A510008), while libraries for sequencing were prepared with 
the KAPA Hyper Prep Kit (KAPA, KK8502) following the manufacturers’ 
guidelines. Samples were pooled and submitted to MSKCC Integrated 
Genomics Operation core for quality control and sequencing on Illu-
mina HiSeq 4000 platform.

Hi-C analysis
Before alignment, Hi-C Pro 2.11.4 was used to fragment, with GATC and 
GANTC as the restriction sites, with all alternative haplotypes removed. 
Reads were aligned with default settings for Bowtie 2.4.1 in Hi-C Pro, for 
both the global and local alignment steps. After both alignment steps, 
reads with a MAPQ of at least 30 were retained for further analysis and 
duplicates were removed. Sample level Hi-C maps were converted to 
.hic file format with JuicerTools 1.22.01. Condition-specific Hi-C maps 
were generated by combining all sample level.allValidPairs files and 
then converting them to the .hic file format with JuicerTools. Hi-C 
datafile ENCFF080DPJ.hic (ref. 54) for K562 was downloaded from 

encodeproject.org. Hi-C.hic datafiles for HUES64 and differentiated to 
EC, MS and EN were downloaded from NCBI GEO accession GSE130085 
(ref. 66). Contact frequency .bedpe files were generated from Juicer 
Tools version 1.22.01 or 2.13.05 (K562).

Predictive modeling of screen hits
Scores for ATAC, DHS, ChIP–seq and H3K27ac signal features were 
mapped onto uniform 1,000 bins centered on each target enhancer. 
For discriminative AUPRC analysis, positive hits were defined as 
log2(FC) > 0.15 for hESC-DE (24 positive hits of 160 DE enhancers tested; 
Supplementary Table 4). For K562 Reilly, we downloaded all ‘Flow-Fish 
CRISPR Screen’ ‘tsv’ or ‘tsv guide quantification’ files from https://www.
encodeproject.org, which yielded experiments at 20 loci9. For analysis 
of the Reilly data, we mapped gRNAs to nonpromoter (>2 kbp from TSS) 
K562 DHS peaks and normalized high and low expression gRNA counts. 
Twelve genes had an enhancer hit with log2(FC) > 0.8 (36 positive hits of 
450 K562 regions; Supplementary Table 5), and we included these loci 
in model evaluation (Extended Data Fig. 9a). For the Nasser data, we 
downloaded Supplementary Table 5 from ref. 40 and mapped all tested 
regions to nonpromoter K562 DHS peaks within 1 Mbp of a tested gene. 
Hits were defined by Regulated=TRUE in their Supplementary Table 5 
(69 positive hits of 1,931 K562 regions; Supplementary Table 6), flank-
ing 65 genes. For modeling, Hi-C contact frequency was calculated in 
5 kbp bins from the .hic files normalized to one for the most promoter 
proximal bin using our data in ESC and DE, and in ENCFF080DPJ in K562. 
We also tried as a feature a distance-corrected promoter Hi-C contact 
frequency, Hi-C × |dist|k, but found no improvement in AUPRC over 
k = 0 for k between 0 and 2. P(in loop) for each enhancer–promoter pair  
was calculated from ChIA–PET reads for all loops in a 2 Mbp window 
spanning the promoter. Total P(in loop) for each distal enhancer– 
promoter pair is given by the ratio of total ChIA–PET read counts of all 
loops spanning both the enhancer and the promoter divided by the 
total counts of all loops containing the promoter (but not necessarily 
also containing the enhancer). The minimum threshold for loop calls in 
the ChIA–PET data is either 3 or 4 reads, and we also used this threshold 
for loop counts. To reduce variability in the ChIA–PET data, we averaged 
counts for multiple datasets. For hESC-DE and Reilly, H1, HUVEC and 
GM12878 ChIA–PET were used, while for K562 Nasser, K562 ChIA–PET 
was used, but different ChIA–PET datasets yield very similar P(in loop) 
and predictive performance. P(in loop) was normalized to one for the 
most promoter proximal bin. Logistic regression was used to combine 
features and predict performance. For these very low dimensional 
logistic regression models, test set performance is reduced by <2% 
compared to using the full dataset, which we used to reduce statistical 
variation when comparing all models. Spearman correlation was calcu-
lated between the probability of being in positive class and enhancer 
effect (log2(FC)). To compare all models in Fig. 7f, log2(FC) in ESC-DE 
and K562 Reilly were scaled to ‘effect size’ by dividing log2(FC) by 1.5 for 
ESC-DE and 8.0 for K562 Reilly so all datasets had a similar effect size 
threshold of 0.1 for hits. We took the top predictions from each model 
to compare performance at constant recall (24 in ESC-DE, 36 in K562 
Reilly and 69 in K562 Nasser, 129 total).

Statistics and reproducibility
All datapoints refer to biological replicates. No statistical method was 
used to predetermine sample sizes. The investigators were not blinded 
to allocation during experiments and outcome assessment. Stochastic 
simulations used randomized noise and averaged over 4,000 cells for 
Fig. 1b and 50 independent runs for Gillespie simulations. No data were 
excluded from the analyses unless the differentiation experiment itself 
failed. The number of biological replicates is reported in the legend of 
each figure. Flow cytometry analysis and RT–qPCR experiments were 
derived from at least three independent biological experiments. For 
bulk ATAC-seq, ChIP–seq, ChIP–MS, Hi-C and bulk RNA-seq, quan-
tification and statistics were derived from at least two independent 
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biological experiments except for one biological replicate of DED1–
GATA6 ChIP–seq and DED2–GATA6 ChIP–seq. Screen and scRNA-seq 
experiments were performed once. All the statistical analysis methods 
are indicated in the figure legends of Figs. 3–5 and 7 and Methods. 
Quantification of flow cytometry and RT–qPCR data are shown as 
the mean ± s.d. Student’s t-test was used for comparison between 
two groups. Analysis of variance was used for multiple comparisons.  
Statistical significance (exact P value) is indicated in each figure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The parental HUES8 hESC line was obtained from Harvard University 
under a material transfer agreement. Sequencing data are available 
at GEO under accession GSE213394 (new data from this study) and 
GSE114102 (published DE-72 h H3K4me1 ChIP–seq data), GSE63525 
(published K562 Hi-C data) and GSE72816, GSE177081, GSE177471 (pub-
lished ChIA–PET data). The Hi-C data are available in the 4D Nucleome 
Data Portal (https://data.4dnucleome.org/) under accession num-
bers 4DNESDO2ZYBM, 4DNESQMUTYXH, 4DNESFL8KDMT, 4DNE-
SW8SIXN7, 4DNESW9GVC97, and 4DNESI1DNSGF. Mass spectrometry 
data are available in the PRIDE database under ProteomeXchange 
accession PXD043070. Source data are provided with this paper.

Code availability
Publicly available software and packages were used throughout this 
study according to each developer’s instructions. The MATLAB codes 
are provided in the Supplementary Code.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Supporting data for the dynamic GRN model. a, The 
detailed schematic of core circuit in the gene regulatory network (GRN). The core 
transcription factors (TFs) cooperatively auto-regulate each other by binding 
to core enhancers and co-regulate downstream peripheral genes by binding to 
peripheral enhancers. b, The ranking plot of principle component 1 (PC1) weight 
of all TFs in PCA analysis from scRNA-seq data during human embryonic stem 
cell to definitive endoderm (hESC-DE) transition. c, The principle component 
analysis (PCA) plots showing selective TFs from the PCA component 1 (Extended 

Data Fig. 1b) of single-cell RNA-seq (scRNA-seq) sampled every 12 hours during 
hESC-DE transition. d, The schematic of core circuit establishment during cell 
state transition, similar to Moris et al.67. The transition of a cell from one steady 
state to another is accompanied by the deconstruction of the original core  
circuit (A, B, C) and the establishment of core circuit of the new state (X, Y, Z).  
e, Stochastic Gillespie simulations of the dynamic GRN network model. The 
green, cyan, purple, yellow and orange lines represent 100%, 70%, 30%, 10% and 
0% of original total enhancer strength respectively.
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Extended Data Fig. 2 | Core TFs identification and characterization during 
hESC-DE transition. a, Flow cytometry analysis showing the gating strategy 
(left), differentiation efficiency at DE-72h measured by DE markers SOX17 and 
CXCR4 (middle) or transition efficiency every 12 h measured by SOX17 (right). 
b, MAGeCK robust ranking aggregation (RRA) scores for negative hits in two 
genome-scale DE screens from Li et al.25. JUN is the only identified TF among the 
negative hits. c, Motif z score of ATAC-seq by gkm-SVM at each time point during 

hESC-DE transition. d, Feature violin plots from scRNA-seq data showing core  
TFs expression changing during hESC-DE transition at single cell resolution.  
e, Volcano plots showing protein-protein interactions identified by ChIP-MS 
using EOMES as the bait at DE-24h, GATA6 and SOX17 as baits at DE-48h. Blue dots 
represent the significantly enriched proteins with log2FC > 2 and -log10 
(P-value) > 2. Selective TFs enriched in ESC and endoderm GO terms are labeled 
by triangles.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Supporting data for the screen design and gRNA 
enrichment analysis. a to d, Statistics of putative enhancers selection and 
gRNAs design. The number of putative enhancers selected for each core TFs 
(a), the size of putative enhancers (b), the total number of gRNAs targeted 
on putative enhancers of each core TF (c), the number of gRNAs targeted on 
each putative enhancer (d). e, The gRNA z score distribution at representative 

enhancers showing gRNAs targeting the same enhancer have similar 
perturbation effect. f, Box plots showing the gRNA z score distribution in all 
putative enhancers of EOMES, MIXL1, GATA6 and SOX17 loci. All box plots follow 
the following format: center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; points, outliers.
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Extended Data Fig. 4 | idCas9-KRAB SOX17GFP/+ hESC line generation using 
cassette switching. a, The schematics of idCas9-KRAB SOX17GFP/+ hESC line 
generation using cassette switching. gRNAs targeting the puromycin selection 
cassette and the 5’ sequence outside TRE are designed for inducing double-
strand break for homology repair. b, Karyotyping results of the idCas9-KRAB 

SOX17GFP/+ hESC line. c, RT-qPCR results showing the inducible expression 
of dCas9-KRAB with doxycycline treatment. n = 3 biologically independent 
experiments. Error bars indicate mean ± SD. Statistical analysis was performed 
by two-tailed unpaired student t-test. d, Flow cytometry results showing the 
inducible expression of dCas9-KRAB with doxycycline treatment.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Supporting data for validation of core enhancers.  
a, b, RT-qPCR showing the expression of the cognate genes decreases by 
enhancer perturbations at DE-36h (a) but mostly restored at DE-72h (b). 
n = 3 biologically independent experiments. Error bars indicate mean ± SD. 
Statistical analysis was performed by two-tailed unpaired student t-test. n.s.: not 
significant. c, Illustration of the enhancer deletion experiments that resulted 
in the GATA6e + 9 deletion (del), GATA6e + 12 del and GATA6e + 9/e + 12 double 
del hESC lines. d, Statistics of SOX17-GFP/CXCR4 double positive cells at DE-72h 

in WT, GATA6e + 9 del, GATA6e + 12 del, GATA6e + 9/e + 12 double del cells, as 
well as cells with non-targeting control, GATA6e + 9 perturbation, GATA6e + 12 
perturbation and GATA6e + 9/GATA6e + 12 dual-perturbation. n = 3 biologically 
independent replicates. Error bars indicate mean ± SD. Statistical analysis was 
performed by two-tailed unpaired multiple comparison test with Dunnett 
correction. n.s.: not significant. e, Flow plots showing SOX17/GATA6 expression 
at DE-36h, DE-72h and SOX17-GFP/CXCR4 expression at DE-72h of WT, GATA6e + 9 
del, GATA6e + 12 del, GATA6e + 9/e + 12 double del.
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Extended Data Fig. 6 | Epigenetic features of DE core enhancers. Relevant ATAC-seq and ChIP-seq tracks of 4 DE core TF loci. Yellow boxes highlight the DE core TFs 
(EOMES, GATA6 and SOX17) bind to DE core enhancers. Genomic coordinates from GRCh38 (human hg38) for each gene are labeled. kbp, kilobase pair.
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Extended Data Fig. 7 | Epigenetic features of ESC and signaling core TF loci. Relevant ATAC-seq and ChIP-seq tracks of ESC and signaling core TF loci. Genomic 
coordinates from GRCh38 (human hg38) for each gene are labeled. kbp, kilobase pair.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Supporting data for enhancer prediction using CIA 
model. a, Hi-C-based and CTCF loop-based chromatin conformation analysis at 
the GATA6, MIXL1 and EOMES loci. b, Precision-recall plot comparing the 
performance for prediction of enhancer hits from the screen using different Hi-C 
datasets. c, Precision-recall plot comparing the performance for prediction of 
enhancer hits from the screen using CIA model with additional H3K4me1 
chromatin feature. d, Bar plot comparing the area under precision recall curve 

(AUPRC) and correlation scores between logistic regression of chromatin feature 
combination and Activity = √ATAC ∗H3K27ac  in CTCF loop-constrained 
Interaction Activity (CIA) model. e, A scatter plot showing the P(in loop) can 
classify hits (green) and non-hits (gray) more clearly than Hi-C-based enhancer-
promoter contact frequency. The size of each dot represents the log2FC of each 
enhancer from the screen.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01450-7

Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | The CIA model predicts active enhancers in different 
scenarios (K562 Reilly). a, gRNA enrichment analysis identified 36 hits from the 
HCR-FF (Hybridization Chain Reaction Fluorescent In-Situ Hybridization 
coupled with Flow Cytometry) screen in K562 cells from Reilly et al.9 b, The scatter 
plot showing the P(in loop) can classify hits (green) and non-hits (gray) in K562 
HCR-FF screen more clearly than Hi-C-based enhancer-promoter contact 
frequency. The size of each dot represents the log2FC of each enhancer from the 
screen. c, Bar plot comparing the AUPRC and correlation scores between 
Hi-C-based enhancer prediction with CIA model and ABC model using K562 

HCR-FF screen results. d, Precision-recall plot comparing the performance for 
prediction of enhancer hits from the K562 HCR-FF screen using CTCF loop-based 
model and Hi-C-based model. e, The scatter plot showing the combinatory 
criteria of P(in loop), H3K27ac and ATAC can clearly separate the hits (green) and 
non-hits (blue and gray) from the K562 HCR-FF screen. P(in loop) > 0.5 is used to 
highlight enhancers and targeting promoters in the same CTCF loop (green and 
blue). The solid line represents the same threshold criterion of 
Activity = √ATAC ∗H3K27ac  in Fig. 7e. The size of each dot represents the 
log2FC of each enhancer from the K562 HCR-FF screen.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | The CIA model predicts active enhancers in different 
scenarios (K562 Nasser). a, 69 identified hits in the K562 cells from Nasser et al 
are plotted40. b, The scatter plot showing the P(in loop) can classify hits (green) 
and non-hits (gray) in K562 Nasser more clearly than Hi-C-based enhancer-
promoter contact frequency. The size of each dot represents the effect size of 
each enhancer from Nasser et al. c, Bar plot comparing the AUPRC and 
correlation scores between Hi-C-based enhancer prediction with CIA model and 
ABC model using K562 Nasser results. d, Precision-recall plot comparing the 

performance for prediction of enhancer hits from the K562 Nasser using CTCF 
loop-based model and Hi-C-based model. e, The scatter plot showing the 
combinatory criteria of P(in loop), H3K27ac and ATAC can clearly separate the 
hits (green) and non-hits (blue and gray) from the K562 Nasser. P(in loop) > 0.5 is 
used to highlight enhancers and targeting promoters in the same CTCF loop 
(green and blue). The solid line represents the same threshold criterion of 
Activity = √ATAC ∗H3K27ac  in Fig. 7e. The size of each dot represents the effect 
size of each enhancer from the K562 Nasser.
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