Difference between revisions of "Tutorial"

From BeerLab
Jump to navigation Jump to search
>Admin
>Admin
Line 18: Line 18:
 
INSTALLATION for linux or mac (R 3.4 or earlier)
 
INSTALLATION for linux or mac (R 3.4 or earlier)
  
$ R
+
$ R <br/>
 
> source("https://bioconductor.org/biocLite.R") <br/>
 
> source("https://bioconductor.org/biocLite.R") <br/>
 
> biocLite('GenomicRanges') <br/>
 
> biocLite('GenomicRanges') <br/>
Line 44: Line 44:
 
1. generate GC, length, and repeat matched negative set and extract fasta sequence files for ctcfpos.fa and ctcfneg_1x.fa:  (Larger negative sets can be generated by increasing xfold, and running time can be decreased by reducing nMaxTrials, at the cost of not matching difficult sequences.  In general training on larger sequence sets will produce more accurate and robust models.)
 
1. generate GC, length, and repeat matched negative set and extract fasta sequence files for ctcfpos.fa and ctcfneg_1x.fa:  (Larger negative sets can be generated by increasing xfold, and running time can be decreased by reducing nMaxTrials, at the cost of not matching difficult sequences.  In general training on larger sequence sets will produce more accurate and robust models.)
  
$ R
+
$ R <br/>
> library(gkmSVM)  
+
> library(gkmSVM) <br/>
> genNullSeqs('ctcfpos.bed',nMaxTrials=10,xfold=1,genomeVersion='hg18',  outputPosFastaFN='ctcfpos.fa', outputBedFN='ctcfneg_1x.bed', outputNegFastaFN='ctcfneg_1x.fa')
+
> genNullSeqs('ctcfpos.bed',nMaxTrials=10,xfold=1,genomeVersion='hg18',  outputPosFastaFN='ctcfpos.fa', outputBedFN='ctcfneg_1x.bed', outputNegFastaFN='ctcfneg_1x.fa') <br/>
  
 
2. calculate kernel matrix:
 
2. calculate kernel matrix:
Line 81: Line 81:
 
If you find this tool useful, please cite:
 
If you find this tool useful, please cite:
  
Ghandi, Mohammad-Noori, Ghareghani, Lee, Garraway, and Beer, Bioinformatics (2016); and
+
Ghandi, Mohammad-Noori, Ghareghani, Lee, Garraway, and Beer, Bioinformatics (2016); and <br/>
 
Ghandi, Lee, Mohammad-Noori, and Beer, PLOS Computational Biology (2014).
 
Ghandi, Lee, Mohammad-Noori, and Beer, PLOS Computational Biology (2014).

Revision as of 18:54, 5 August 2019

gkmSVM-R Tutorial notes

INSTALLATION for linux or mac (R 3.5 or later)

$ R
> if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
> BiocManager::install()
> BiocManager::install(c('GenomicRanges','rtracklayer','BSgenome', 'BSgenome.Hsapiens.UCSC.hg19.masked', 'BSgenome.Hsapiens.UCSC.hg18.masked'))
> install.packages('ROCR','kernlab','seqinr')

$ git clone https://github.com/mghandi/gkmSVM.git
$ R CMD INSTALL gkmSVM

--or--

> install.packages('gkmSVM')

INSTALLATION for linux or mac (R 3.4 or earlier)

$ R
> source("https://bioconductor.org/biocLite.R")
> biocLite('GenomicRanges')
> biocLite('rtracklayer')
> biocLite('BSgenome')
> biocLite('BSgenome.Hsapiens.UCSC.hg19.masked') (or other genomes)
> biocLite('BSgenome.Hsapiens.UCSC.hg18.masked')
> install.packages('ROCR')
> install.packages('kernlab')
> install.packages('seqinr')
> quit()

$ git clone https://github.com/mghandi/gkmSVM.git
$ R CMD INSTALL gkmSVM

--or--

> install.packages('gkmSVM')


Now to run gkmSVM-R on the ctcf test set from Ghandi Lee, Mohammad-Noori, Beer, PLOS CompBio 2014:

Input files: ctcfpos.bed nr10mers.fa

1. generate GC, length, and repeat matched negative set and extract fasta sequence files for ctcfpos.fa and ctcfneg_1x.fa: (Larger negative sets can be generated by increasing xfold, and running time can be decreased by reducing nMaxTrials, at the cost of not matching difficult sequences. In general training on larger sequence sets will produce more accurate and robust models.)

$ R
> library(gkmSVM)
> genNullSeqs('ctcfpos.bed',nMaxTrials=10,xfold=1,genomeVersion='hg18', outputPosFastaFN='ctcfpos.fa', outputBedFN='ctcfneg_1x.bed', outputNegFastaFN='ctcfneg_1x.fa')

2. calculate kernel matrix:

> gkmsvm_kernel('ctcfpos.fa','ctcfneg_1x.fa', 'ctcf_1x_kernel.out')

3. perform SVM training with cross-validation:

> gkmsvm_trainCV('ctcf_1x_kernel.out','ctcfpos.fa','ctcfneg_1x.fa',svmfnprfx='ctcf_1x', outputCVpredfn='ctcf_1x_cvpred.out', outputROCfn='ctcf_1x_roc.out')

4. generate 10-mer weights:

> gkmsvm_classify('nr10mers.fa',svmfnprfx='ctcf_1x', 'ctcf_1x_weights.out')

This should get AUROC=.955 and AUPRC=.954 with some small variation arising from the randomly sampled negative sets. You can then select the top weights with:

$ sort –grk 2 ctcf_1x_weights.out | head -12

which should give weights very similar to:

CACCTGGTGG 5.133463 CACCAGGTGG 5.090566 CACCAGGGGG 5.038873 CCACTAGGGG 4.833398 CCACCAGGGG 4.832404 CACCTAGTGG 4.782613 CACCAGAGGG 4.707206 CACTAGGGGG 4.663015 CACTAGAGGG 4.610800 CACTAGGTGG 4.580834 CCACTAGAGG 4.529869 CAGCAGAGGG 4.335304

If you find this tool useful, please cite:

Ghandi, Mohammad-Noori, Ghareghani, Lee, Garraway, and Beer, Bioinformatics (2016); and
Ghandi, Lee, Mohammad-Noori, and Beer, PLOS Computational Biology (2014).